
www.manaraa.com

Web-based Animation of Data Structures Using JAWAA

Willard C. Pierson and Susan H. Rodger�
Duke University, Durham, NC

rodger@cs.duke.edu

Abstract

JAWAA is a simple command language for creating ani-
mations of data structures and displaying them with a Web
browser. Commands are stored in a script file that is retrieved
and run by the JAWAA applet when the applet’s Web page is
accessed through the Web. JAWAA commands allow for cre-
ation and movement of primitive objects (circles, lines, text,
rectangles) and data structure objects (arrays, stacks, queues,
lists, trees and graphs). A JAWAA script can be generated as
the output of a program written in any language.

1 Introduction

An animation of a data structure is helpful to students as an
educational aid in two ways, first as an alternative view in
understanding a newly presented data structure or algorithm
and second as an aid in debugging a program that uses the
data structure. An animation can be easier to understand
and remember than a textual representation, especially when
one can interact with the animation by trying different input.
Furthermore, using animations to debug programs can aid in
finding errors faster by seeing incorrect movement or pieces
that are not connected and should be.

We have developed JAWAA (Java And Web-based Algo-
rithm Animation), an easy-to-use, architecture independent
method for creating animations of data structures run over
the Web. Written in Java, the program provides an interface
through which users can write animations and then display
them with a Web browser that supports Java. The animations
are written in a simple script language and can easily be gen-
erated as output from a program written in any programming
language. One does not need to know Java in order to use
JAWAA.

Using JAWAA, one can quickly animate data structures in�The work of this author is supported by the National Science Founda-
tion’s Division of Undergraduate Education through grant DUE-9555084.

their program. One-line commands in JAWAA can be used
to create and display a data structure, followed by one-line
commands to perform operations on the data structure.

By writing JAWAA in Java, users can run the animations
on almost any machine and do not have to install the soft-
ware locally. By leveraging the capabilities of Java and the
Web, we have built a system that will provide educators the
realistic option of quickly generating algorithm animations
for demonstration use in the classroom or by students gener-
ating quick animations of their programs.

In Section 2 we discuss related work, and in Section 3 we
give an overview of JAWAA. In Section 4 we describe the
animation language, and in Section 5 we give examples of
animating programming assignments. Section 6 describes
the program design of JAWAA, Section 7 the user response,
and Section 8 gives concluding remarks.

2 Related Work

Over the last decade a diversity of packages for algorithm an-
imation have been developed [12]. The package Xtango [8]
and its successor Samba [9] have been used by many com-
puter science educators for a variety of topics, including op-
erating systems[4], algorithms and data structures [7] and
genetic algorithms [5]. In addition, Samba has been used by
students to generate animations [9]. JAWAA’s objects are
designated in a similar manner to those in Samba, one-line
commands for creating and moving objects. With Samba,
animations are built using only primitive objects, but with
JAWAA data structures can be created easily in one-line
commands. In addition, there is no software to install to use
JAWAA as animations are run over the Web.

Although the algorithm packages to date have succeeded
in providing basic functionality, few have leveraged the full
capabilities of the Web and Java. There is, however, a great
deal of thought about the theoretical possibilities. In [6],
Naps discusses how algorithm visualization could be inte-
grated into the Web. In [3], the authors discuss ways in
which the Web could be used to build courseware modules in
order to aid student understanding. Among the conclusions
of both papers is the assertion that Java offers many attractive
features with which an algorithm animation system could be



www.manaraa.com

built. There is currently much work being done in this area
as summarized in [2] with most focusing on porting current
applications to Java. There are also several Java applets cur-
rently on the Web that animate a single algorithm.

3 JAWAA Overview

JAWAA makes it easy to create and run an animation, view-
ing the animation over the Web using Java. To create an
animation, one creates a script file and a simple applet. The
script file is retrieved by the JAWAA applet when the applet’s
web page is accessed. The program then begins to interpret
the commands line by line, carrying out the graphic task of
each instruction.

The user interface is composed of an animation canvas
and a panel of user controls. With these controls the user
can start, stop, pause, and step through the animation. A
scrollbar allows one to control the speed of the animation.

4 Animation Language

The animation language has been designed to require little
programming experience. Animation scripts have a simple
format of one command per line. There are two types of
commands, those that handle specific objects and those that
specify an action on an object. Of those that deal with spe-
cific objects there are two types of objects that can be ma-
nipulated, primitive objects, such as a circle, and intelligent
objects. Intelligent objects represent data structures and have
specific commands to perform operations on them.

4.1 Primitive Objects

Primitive objects in JAWAA are lines, circles, text, rectan-
gles, and polygons. Shown below is an example of acircle
command to draw a red-filled circle with a blue outline at
position (30,20) and with radius 60. The circle is given an
identifier name, c1, so that it can be refered to later, for ex-
ample to change its color or to move it to another position.

circle c1 30 20 60 blue red

4.2 Arrays

Arrays are created by using thearray command and specify-
ing the contents of the cells and the orientation of the array,
either vertical or horizontal. Shown below is an example to
create an array namedwordscontaining three words. The
array is drawn horizontally at position (50,60), with black
outline and red background.

array words 50 60 3 "hello" "my" "world"
horz black red

Array cells are manipulated on an individual level as if
they were rectangles. For instance if an array was named A,
then A[2] would refer to the 3rd entry in A (array indexing
begins at 0). This allows each cell to be accessed directly
instead of creating commands specific to array cells.

4.3 Stacks and Queues

There are three commands specific to the use of stacks. The
stackcommand declares a stack and must contain informa-
tion about the name of the stack, the color, the position, the
size, and the entries. Thepushcommand pushes a string on
the stack and thepop command pops the top item off the
stack. Queues have three commands, aqueuedeclaration,
enqueue, anddequeue.

4.4 Graphs

Graphs in JAWAA can be drawn with node placements spec-
ified by the user or by an automated layout chosen from
two algorithms. To build a specified layout graph, thenode
andconnectNodescommands are used. Thenodecommand
specifies the location and size of a node. Once the nodes
are placed, theconnectNodescommand can be used to cre-
ate an edge between two nodes. TheconnectNodescom-
mand takes as parameters the names of the two nodes and a
boolean which indicates whether to animate the connection
or to immediately place the edge on the screen. For example,
shown below is anodecommand to create a node namedn1
located at position (30,20) with diameter 10. The outline of
the node is black with its interior light gray.

node n1 30 20 10 black lightGray

Noden1 could be connected to another noden3 with an
edge labelede9with the command shown below.

connectNodes e9 n1 n3 black false

One can also use JAWAA’s automated graph layout ca-
pabilities to draw a graph. Thegraphcommand is used to
create the graph and takes as parameters a list of the connec-
tions in the graph and the layout algorithm to be used. One
algorithm draws the nodes of the graph in a circle.

A second heuristic algorithm uses a cost function to assess
the quality of the graph[10]. The idea is to place nodes indi-
vidually on the graph, to compute the cost of each placement
and then place the node at the position with the least cost.
Possible placements for nodes are found with a template that
gives locations around the node’s neighbors and the barycen-
ter1 of its neighbors [11]. The cost function rates the graph
on three criteria: the distance between all nodes, the distance
between the node’s neighbors, and the number of edge cross-
ings. The graph with the most distance between nodes, the
least distance between neighbors, and the least number of
crossings will receive the lowest (best) cost. This graphing
style takes significantly longer to run than the circle style to
draw a graph. Figure 1 shows a graph layout using this al-
gorithm, and Figure 2 shows the change in layout after one
edge (and one node) was added to the graph. Notice most of
the nodes have changed their position.

1The barycenter is the “average” location of the nodes, or theaverage of
each node’s x and y coordinate



www.manaraa.com

Figure 1: Drawing a Graph

Figure 2: Adding an Edge to the Graph

There are two other commands that can be used with
graphs once the graph has been created. TheaddNode
command places an unconnected node on the graph. The
addEdgecommand adds the connection to the graph along
with either node if either have not been previously placed.

4.5 Trees

The creation of trees is similar to the creation of graphs.
Trees can be created by specifying the position of each node
or by an automated process. Thetreecommand will create a
binary tree based on a list of connections. The tree is drawn
with a recursive algorithm developed to apportion space ac-
cording to the width of a subtree. This results in a tree that
makes the most use out of the drawing area. TheaddEdge
command can also be used with trees to add new nodes to the
tree. Figure 3 shows the automatic drawing of a tree and Fig-
ure 4 shows the same tree after several more elements have
been added to the tree. Note the change in position of nodes
5 and 9 to make room for the additional nodes.

Figure 3: Drawing a Tree

Figure 4: The Tree Several Steps Later

4.6 Action Commands

Action commands are different than the previous commands
in that they act on a variety of different object types. For
example, the commandmoveRelativewill move an object
a specified distance from its current location. The command
changeParamwill change a given parameter to a given value.
For example, the command shown below changes the back-
ground color of the second entry of array A to green.

changeParam A[1] bkgrd green

There are other commands to delete objects, to pause the
animation for a specified amount of time, and to group a list
of objects together so that they can be treated as one object.

5 Examples using JAWAA

We describe the setup for running JAWAA and give three ex-
amples to show how JAWAA can be used to animate a pro-
gramming assignment. Any programming assignment that
uses a data structure that JAWAA supports can be easily
modified to produce JAWAA commands for animating the
data structure. Small amounts of data that can fit reasonably
in a window work best and can aid in understanding an algo-
rithm.

The setup for running JAWAA is easy. In each assign-
ment, students copy a templated web page and change one
line to the path of their public web directory. JAWAA output
is written to a file in this directory. To see the animation, stu-
dents just run their program to generate new output and then
reload the web page.

We describe two assignments in the fall of 1997 in the
courses CPS 100 and CPS 100E, data structures courses at
Duke. In the first assignment, students write a program to
find word ladders. (A word ladder is a list of words in which
consecutive words differ by one letter.) Figure 5 shows the
final view of an animation of a word ladder program, animat-
ing an array and a queue. The animation begins by storing
the words to consider for ladders (the dictionary) in an array
with the pointer fields empty. Two words are given, start and
goal, and the object is to change the start word to the goal
word through a ladder. The ladder is found in the following
manner. The start word is placed in the queue. Repeatedly a



www.manaraa.com

word is dequeued and becomes the current word. Any word
in the array that has not yet been placed in the queue and is
one letter different than the current word is enqueued and its
link is set to the current word’s position in the array. If the
goal word is found, the ladder can be produced by following
the links in the array, from the goal word to the start word.

Figure 5: Finding WordLadders

In a second assignment, students animate the Josephus
problem. N people sit around a circle and a hot potato is
passed around. EveryMth person the potato reaches is elim-
inated. This repeats until one person is left, the winner. In
this animation, the people are represented in an array, the
passing of the potato by blinking a slot in the array, and the
elimination of a person, by pulling the person out of the ar-
ray.

In the course CPS 140, a formal languages course at Duke,
students write a program for an LR(1) parser. The students
are given a parse table and write the code for parsing a string,
which includes the parsing stack and accessing the parse ta-
ble. Figure 6 shows how a student created an animation of
parsing a string by adding JAWAA output to his program. He
animated the parsing stack, the current position in the string
and the movement through the parse table (by highlighting
the current entry). Although there is not a JAWAA command
for a 2-dimensional array, one can easily be animated by gen-
erating an array for each row (or for each column). The parse
table in Figure 6 was generated by creating an array for each
row, named a1, a2, etc. The highlighted position (0,a) in the
table is refered to as a2[1].

6 Program Design

There are four modules in the JAWAA program design.
When the JAWAA applet is loaded, execution starts in the
AnimClass module. This module controls the execution of

Figure 6: LR parsing

the animation and receives user commands through the user
interface. The Animation class contains the routines that
draw and update the screen. The Interpreter class reads the
commands from the user specified animation script and calls
the appropriate methods in the Animation class to carry the
commands out. Finally, the GraphicStore class stores the
graphic objects in memory.

6.1 AnimClass

The AnimClass module drives all execution that takes place
in the program. When the program is run, the AnimClass
constructor method is called to declare instances of the other
classes and setup the layout of the user interface. When the
user clicks the start button, AnimClass initiates the drawing
of the animation. The program first retrieves the animation
from the specified URL. The program then uses Java’s multi-
thread capability to spawn a new thread, which is responsible
for running the animation. This is to prevent the drawing
of the animation to affect the program’s interaction with the
user. The two threads communicate with each other through
shared variables.

The animation itself is run by a method in the new thread.
In this method, a loop repeats until the animation is finished.
Each iteration of the loop calls a method of the Interpreter
module, which reads and executes the next line of the anima-
tion script. Next the screen is redrawn so that the actions of
the command are displayed. The method then goes to sleep
for a period of time based on the user’s speed selection.

6.2 Animation

The Animation module has two parts: methods that deal with
the drawing of objects on the screen and methods that create
and manipulate the objects behind the scene. The first part
is used when the screen is redrawn. Screen redrawing is ac-
complished by double-buffering, which involves using two
images, one held in memory and one that is displayed on the



www.manaraa.com

screen. To redraw the screen, a new image containing each
graphic object is created and then placed over the image cur-
rently on the screen, creating a flicker-free animation.

The second part of the Animation module handles the ma-
nipulation of the graphic objects. Every time a command
is processed, the Interpreter calls methods from this class to
carry out the desired action. For example, there are meth-
ods to create objects and there is a method to move an ob-
ject. Once these methods have finished carrying out the com-
mand’s instructions, the Interpreter will return to the main
loop in AnimClass where the screen is redrawn.

6.3 Interpreter

The Interpreter class reads in each line of the animation
script and calls the necessary methods in Animation to ful-
fill each command. To read in a line from the script the In-
terpreter uses a Java supplied class called StreamTokenizer,
which takes an input stream and returns discrete words and
numbers. The Interpreter then takes each number or word
and stores them as strings in an array. Based on the first
word of the line, which is always the command, the Inter-
preter calls a function to process the command line. This
function then arranges the parameters and calls the appropri-
ate method in Animation.

6.4 GraphicStore

Objects on the screen are stored in memory by storing in-
formation about each object in a separate instance of a class
called GraphicObject. The GraphicStore module defines the
GraphicObject class and handles the storage of objects using
a hash table class provided with Java. However, the order
of object creation is also needed and stored in an array, so
the first objects created in the animation are visually below
objects created later.

7 Availability

A Beta version of the JAWAA software package was re-
leased in late December 1996. In fall of 1997 we are cur-
rently using JAWAA in the Data Structures courses (CPS
100 and CPS 100E) and the Algorithms course (CPS 130)
at Duke. One user in Australia has developed a suite of an-
imations for use in an undergraduate Data Structures class
and stated that he found “JAWAA to be an exceptional
tool for animating algorithms.” Through his feedback, we
have refined the package. JAWAA is currently available on
http://www.cs.duke.edu/�rodger
8 Conclusion

JAWAA is a command language for creating animations of
data structures and algorithms. JAWAA commands can be
added as output to any program to quickly generate an ani-
mation. When used in conjunction with traditional teaching
methods, JAWAA can provide students with an alternative

and visual perspective, which may help increase their under-
standing.

References

[1] A. Badre, C. Lewis, and J. Stasko, Empirically Evalu-
ating the Use of Animations to Teach Algorithms,Pro-
ceedings of the 1994 IEEE Symposium on Visual Lan-
guages,p. 48-54, 1994.

[2] C. Boroni, F. Goosey, M. Grinder, R. Ross and P.
Wissenbach, WebLab! A Universal and Interactive
Teaching, Learning, and Laboratory Environment for
the World Wide Web,Twenty-eighth SIGCSE Technical
Symposium on Computer Science Education, p. 199-
203, 1997.

[3] D. Carlson, M. Guzdial, C. Kehoe, V. Shah and J.
Stasko, WWW Interactive Learning Environments for
Computer Science Education,Twenty-seventh SIGCSE
Technical Symposium on Computer Science Education,
p. 290-294, 1996.

[4] S. Hartley, Animating Operating Systems Algorithms
with Xtango,Twenty-fifth SIGCSE Technical Symp. on
Computer Science Education, p.344-348, 1994.

[5] D. Jackson and A. Fovargue, The Use of Animation
to Explain Genetic Algorithms,Twenty-eighth SIGCSE
Technical Symposium on Computer Science Education,
p. 243-247, 1997.

[6] T. Naps, Algorithm visualization served off the World
Wide Web: why and how,Proc. on Integrating Tech-
nology into Computer Science Education,p.66-71,
1996.

[7] S. Rodger, An Interactive Lecture Approach to Teach-
ing Computer Science,Proceedings of the Twenty-sixth
SIGCSE Technical Symposium on Computer Science
Education, p.278-282, 1995.

[8] J. Stasko, Tango: A Framework and System for Algo-
rithm Animation,IEEE Computer, p.27-39, 1990.

[9] J. Stasko, Using Student-Built Algorithm Animations
as Learning Aids,Twenty-eighth SIGCSE Technical
Symp. on Computer Science Education, p. 25-29, 1997.

[10] D. Tunkelang. A practical approach to drawing undi-
rected graphs. Technical Report, Carnegie Mellon Uni-
versity, June 1989.

[11] HiroYuki Watanbe, Heuristic graph displayer for g-
base.International Journal of Man-Machine Studies,
p. 287-302, 1989.

[12] J. Wilson and R. Aiken, Review of animation sys-
tems for algorithm understanding,Proceedings on Inte-
grating Technology into Computer Science Education,
p.75-77, 1996.


